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Analytic expressions are derived for the feed coordinate and flow division factor 
giving maximum separating power in a column-type apparatus. 

In isotope separation, it is often necessary to devise separator cascades in column 
form, where the feed is input at an intermediate point [i]. It is complicated to optimize 
the column to improve the economic performance [1-3], and nonlinear programming is required 
[4]; it is thus best to develop methods for determining the optimum parameters approximetaly. 

We consider separating a bindary isotope mixture having any concentration c F for the com- 
ponent to be enriched in the feed flow F and determine what values of the coordinate s for 
the feed and what value of the separation factor 0 will give maximum separating power 6U. 

The transport equations for the masses of target component in the depleted and enriched 
parts take the following form, where there is a transverse enrichment effect set up by an 
external field and which is multiplied by the length of the device on account of the mix- 
ture countercurrent, where in general the transport coefficients are dependent on the axial 
coordinate x [3]: 

dc H W (z) W 
- - =  - - c ( 1 - - c ) + - -  

dz K ~" (z) K :r~ (z) 
( c - - - c ) ,  O ~ z ~ L - - t ,  

d.----C--C.= - -HP(z)  c(1 - -  c) - - P  (c+--c), L - - I ~ z ~ L ,  
dz K" (z) K v (z) 

where the detailed forms of H(z) and K(z) are determined by the method and conditions. 

We assume that the concentration limits for the target component or the concentration 
in the feed will be such that the c(l - c) nonlinear term in (i) can be approximated as 
a linear combination a + bc [3, 5]. Then one solves (i) with the target-component mass- 
conservation equation 

and the boundary conditions 

c=c- 

cp = Oc + + ( 1 - -  (9) c -  

(i) 

a t  Z : 0 ,  C : C + a t  Z = L ,  c : c :  a t  z = L -  l 

and assumes in the general case that c F and the concentration cf within the column at the 
feed point (z = L - s are not the same, which gives an expression for the total enrichment 
6 = C+-- C-: 

C + -- C- ==- ~, 
c F (I-- c~) ( 2 )  

in which 
?, = ( Y  - -  x )  

b [ O Y  -F (1 - - @ ) X ]  

X Y 6  a 
C l = - -  

( z  - -  x )  b 

L--I L--I i 
-}- bexp_I ot' P, (z)dz] t'o H* (z)exp [-- o p' (z') dz' ] dz Y 1 

., . K~: (z )  ' 
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X== 1---b L i dz / [ - ;.,(z'td,'l 
L: ,  L-~ , (z) 

H W (z) b -- W 
P~ = K W (z) ' 

H p (z) b + P 
P2 = K P (Z) 

(3) 

The separating power is [2] 

6U -- PV  (c +) + W V  (c-) - -  FV (cF). 

Eq. (4)  can be expanded as  a T a y l o r  s e r i e s  n e a r  CF: 

(4) 

8U - -  @ ( I  - -  @) F6~Io11, 
2 

(5) 

in which 

dzV 
Io = [c e (1 - -  @)1~ dc---'F ' 

& = ~ n! ~c~ '~ -~  IZ=2 

We differentiate (5) with respect to y = R/L: 

O6U _ 0 ( 1 - - @ )  F'8 a6 ioi2, 
av 2 ay 

where 1~ = 2 nan �9 

n=2 

- -  --Z an. 
n~2 

(6) 

Equation (6) shows that series 12 is sign-varying, so the separating power has a maximum 
with respect to y for 

08 
a v  - o. (7) 

We average HF(z), KP(z) and HW(z), KW(z) over the heights of the tap-off and discharge parts 
of the column and take them as correspondingly H -]?, KP and H -W, K W. One substitutes for 

from (3) into (7) and performs transformations to get a transcendental equation for the 
optimum feed coordinate: 

HW ~w lnA 
1 - - O - - b - - i f - -  + FL 

Uo= ( R  W ) ~ (  BPRw) ' (8) 
1 - - e  1 - -  g---~- - b  1 

F N ~  P 

in which 

The optimal coordinate 
(3) as a function of C F, 0, H P 

If we assume that 

A = TIPRVe[1 + b(1--O)6] 

is determined by successive approximation on solving (8) with 
, K-P, H-W K--W, L. 

H ~ <  1, ~ = ~ = ~ ,  N~=R~=K, _>_< i, (9) 

Eq. (8) becomes a standard relation [6]: 

uo = 1--@. ( i o )  

Eq. (i0) has been derived [6] from equality for c F and cf for c F << 1 and obedience to (9). 
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We now determine the maximum separating power, where for simplicity we assume that 

(9) and (i0) are obeyed. Then [6] 

H z 2 [ 1 -- exp (" t)] ~ 
6 U - -  L 

4K t 

Here t = 0(i - 0)xE; X = F/H; E = HL/K; H2/4K is the specific separating power, and the 
maximum for the relative separating power 6U/[(H2/4K)L] is given by 

2t0 exp (-- to)[ I -- exp (-- to)] ---- 0, 

whose solution is 

(11) 

to ,'~ 1.257 = [0 (1 - -  O) XElo. ( 1 2 )  

into (ii) to get the maximum relative separating power for a short column, We substitute (12) 
which does not exceed 81%, which agrees with [7]. 

One can rewrite (12) as follows on the basis that 0(i - 8) ~ 1/4: 

(ZE)o ~ 5. ( 13 ) 

Approximate equality applies for symmetrical operation (0 = 0.5); (13) implies that in the 
unsymmetrical state (0 # 0.5), the optimum feed has the lower bound 5H/E0, and for a given 
F0, there are two unsymmetrical states for which 00 is defined by 

1.257 = O. ( 1 4 )  

Figure i shows the optimum tap-off part length (i/L) 0 from (8) as a function of 0 for 
various c F and X- Here s must be determined on the basis of the working concentration 
range. For example, for O = 0.5 and c F << i, the optimum feed coordinate lies above the 
central plane of the column, while if c F is close to one, it lies below it. As X increases, 
the dependence of the optimum length on the concentration weakens. 

Figure 2 gives the enrichment as a function of the feed coordinate for various E in a 
thermal-diffusion column, whose working parameters were taken from [3]. This agrees well 
with the analogous result from [3], i.e., 6U = 6U 0 for c F = cf with the [3] working condi- 
tions. 

In general, (10) is not obeyed, and c F = cf does not correspond to maximum separating 
power. In other words, if 6U is maximal, there may be local mixing at the feed coordinate, 

o op o,e o o 

Fig. i 
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Fig. 2 

Fig. i. Optimum feed coordinate (i/L) 0 is a function of flow separation 
factor 0 for various CF and X = F/H: i) cF = 1.0"10 -3 , X = 2; 2) cF = 5.0. 
10 -I , xany value; 3) CF = 9.99"10 -I , X = 2; 4) CF = 1.0"10 -3 , X = i0; 
5) CF = 9.99"10 -I , X = I0 for E = 5.88. 

Fig. 2. Relative enrichment 6/60 as a function of feed coordinate in a 
thermal-diffusion column (X = 2): i) cF = 1.0"10 -3 , O = 5.0.10 -2 , E = 
5.88; 2) c F = 9.99"10-i; 0 = 9.5"10 -I , E = 5.88; 3) cf = 5.0.10 -I , 0 = 
0.5; E = i. 
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Fig. 3. Optimal feed coordinate (6/L) and relative 
mixing (CF - cf)/cF in the feed section as functions 
of xW/• c F = 1.0-10-3; 0 = 4.8.10-2; F/H -W = 2; 
HWL/K W = 5.88. Aclc F, %. 

but here the combination of H -W, K -W and H -P, K -P in ~ from (3) is such that the sum of the 
separating powers for the tap-off and discard parts will be maximal. 

Figure 3 shows ~0 and the relative mixing Ac/cF = (cF - cf)/cF at the feed section as 
functions of xW/x P, which characterizes the difference in conditions in the discard and tap- 
off parts. The optimum feed coordinate from (8) and the corresponding maximum ~U can result 
in local mixing being appreciable. It is then incorrect to use the method of calculating 60 
given in [8], which is based on the condition CF = cf. 

NOTATION 

P = OF, c+; W = (i - @); F, c-; F, CF, target-component fluxes and concentrations in the 
sampling, discard, and feed sections; @, flow division factor; ~U, separating power; V(c), 
separation potential; c, concentration averaged over the cross section; cf, concentration 
within the apparatus in the feed plane (z = L - 6); z, longitudinal coordinate; y = 6/L; L, 
column length; 6, tap-off part length; H -W, K -W, H -P, K -P, coefficients in (i) averaged corre- 
spondingly over the heights of the discard and tap-off parts; X = F/H; E = HL/K; a = cF 2, 
b = 1 - 2CF, linearization constants; ~, enrichment function. Superscripts: 0, maximum 
separating power; P, tap-off part; W, waste part. 
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